Pro-oxidative effect of peroxynitrite regarding biological systems: a special focus on high-molar-mass hyaluronan degradation.

نویسندگان

  • Eva Hrabarova
  • Ivo Juranek
  • Ladislav Soltes
چکیده

Current understanding on the role of peroxynitrite in etiology and pathogenesis of some human diseases, such as cardio-vascular diseases, stroke, cancer, inflammation, neurodegenerative disorders, diabetes mellitus and diabetic complications has recently led to intensive investigation of peroxynitrite involvement in physiology and pathophysiology. Mechanism of cytotoxic effects of peroxynitrite involve its reactions with lipids, DNA/RNA, proteins, and polysaccharides, thus triggering cellular responses ranging from subtle changes of cell functioning to severe oxidative damage of the affected macromolecules leading to necrosis or apoptosis. The present work is aimed at providing a brief overview of i) peroxynitrite biosynthesis and reaction pathways in vivo, ii) its synthetic preparation in vitro, and iii) to reveal its potential damaging role in vivo, on actions studied via monitoring in vitro hyaluronan degradation. The complex biochemical behavior of peroxynitrite is determined by a number of variables, such as chemistry of the reaction itself, depending mostly on the involvement of conformational structures of different energy states, concentration of the species involved, content of reactive intermediates and trace transition metal ions, contribution of carbon dioxide, presence of trace organics, and by the reaction kinetics. Recently, in vitro studies of oxidative cleavage of hyaluronan have, in fact, been the subject of growing interest. Here we also describe our experimental set-up for studying peroxynitrite-mediated degradation of hyaluronan, a system, which may be suitable for testing prospective pharmacological substances.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Degradation of high-molar-mass hyaluronan and characterization of fragments.

A sample of high-molar mass hyaluronan was oxidized by seven oxidative systems involving hydrogen peroxide, cupric chloride, ascorbic acid, and sodium hypochlorite in different concentrations and combinations. The process of the oxidative degradation of hyaluronan was monitored by rotational viscometry, while the fragments produced were investigated by size-exclusion chromatography, matrix-assi...

متن کامل

Protective effects of manganese(II) chloride on hyaluronan degradation by oxidative system ascorbate plus cupric chloride

The degradation of several high-molar-mass hyaluronan samples was investigated in the presence of ascorbic acid itself and further by an oxidative system composed of ascorbic acid plus transition metal ions, i.e. Fe(II) or Cu(II) ions. The latter oxidative system imitates conditions in a joint synovial fluid during early phase of acute joint inflammation and can be used as a model for monitorin...

متن کامل

Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: evaluation of antioxidative effect of cysteine-derived compounds.

Based on our previous findings, the present study has focused on free-radical-mediated degradation of the synovial biopolymer hyaluronan. The degradation was induced in vitro by the Weissberger's system comprising ascorbate plus cupric ions in the presence of oxygen, representing a model of the early phase of acute synovial joint inflammation. The study presents a novel strategy for hyaluronan ...

متن کامل

Degradation of high-molar-mass hyaluronan by an oxidative system comprising ascorbate, Cu(II), and hydrogen peroxide: inhibitory action of antiinflammatory drugs--naproxen and acetylsalicylic acid.

Changes in dynamic viscosity of the solutions of a high-molar-mass hyaluronan (HA) were monitored using a rotational viscometer. The degradative conditions generated in the HA solutions by a system comprising ascorbate plus Cu(II) plus H(2)O(2) were studied either in the presence or absence of a drug--naproxen or acetylsalicylic acid. Continual decrease of the dynamic viscosity of HA solution w...

متن کامل

Free-radical degradation of high-molar-mass hyaluronan induced by ascorbate plus cupric ions: testing of stobadine and its two derivatives in function as antioxidants.

Stobadine·2HCl and its two hydrophilic derivatives SM1dM9dM10·2HCl and SME1i-ProC2·HCl were tested in the function of antioxidants on hyaluronan (HA) degradation induced by the Weissberger oxidative system [ascorbate plus Cu(II)]. As a primary method, rotational viscometry was applied, where the substance tested was added before or 1 h after the initiation of HA degradation. The most effective ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • General physiology and biophysics

دوره 30 3  شماره 

صفحات  -

تاریخ انتشار 2011